Теорема Пуанкаре простыми словами » Юмор и не только.
Юмор и не только. » Прикольные картинки » Теорема Пуанкаре простыми словами
Предложить новость
Теорема Пуанкаре простыми словами
Сайт хорошего настроения, масса прикольных картинок, смешных видеороликов, анекдотов и прочих приколов. Именно для того, чтобы вы быстро смогли увидеть смешные фото со всех уголков мира. Также у нас вы найдете видео приколы в огромном количестве. Здесь пользователями собраны самые смешные анекдоты, фото, картинки и видео приколы со всего Интернета. Наши журналисты стараются для вас. Хорошего вам настроения...

Доказательство этой гипотезы российским математиком Григорием Перельманом привело к некоторым очень интересным выводам с точки зрения нашего понимания мира.



Смотреть все фото в галерее

Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре.



В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века.



Основатель топологии



Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики.

Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д.


×

Геометрия - отрасль математики, где Пуанкаре стал признанным новатором и лидером мирового масштаба. Теория Лобачевского, открыв новые измерения и пространства, еще нуждалась в ясной и логичной модели, и Пуанкаре придал идеям великого русского ученого прикладной характер.

Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии.



Одна из семи задач тысячелетия

В самом начале XXI века одно из подразделений американского университета в Кембридже - математический институт, основанный на средства бизнесмена Лэндона Т. Клэя - опубликовал список Millennium Prize Problems (проблем тысячелетия). Он содержал семь пунктов из классических научных задач, за решение каждой из которых учреждалась премия в миллион долларов:

• Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности).
• Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами).
• Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере).
• Гипотеза Римана (о закономерности размещения простых чисел).
• Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий).
• Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей).
• Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые).

Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял.



Классическая формулировка

Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее.

Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии.



Гомеоморфизм

Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать.

Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб.



Связность

Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов.



Многообразие

Если объект или пространство разделить на множество составных частей – окрестностей, окружающих какую-то точку, - то их общность называют многообразием. Именно такое понятие содержит теорема Пуанкаре. Компактность означает конечное число элементов. Каждая отдельная окрестность подчиняется законам традиционной – эвклидовой – геометрии, но вместе они образуют нечто более сложное.

Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку.



Трехмерная сфера

По определению, сфера – совокупность точек, которые равноудалены от центра – некой фиксированной точки. Одномерная сфера расположена в двухмерном пространстве в виде окружности на плоскости. Двухмерная сфера – поверхность шара, его «корочка» - совокупность точек в трехмерном пространстве и, соответственно, трехмерная сфера – суть теоремы Пуанкаре – поверхность четырехмерного шара. Вообразить такой объект очень трудно, но, говорят, мы - внутри такого геометрического тела.

Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире.

Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку.

Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные.



Долгий путь к истине

Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4.



Теорема Пуанкаре простыми словами

В 2006 году эта награда - медаль Филдса - была присвоена русскому математику из Санкт-Петербурга. Григорий Яковлевич Перельман доказал теорему Пуанкаре для трехмерного многообразия и трёхмерной сферы. Получать награду он отказался.


Обыкновенный гений



Григорий Яковлевич родился 13 июня в Ленинграде, в интеллигентной семье. Отец - инженер-электрик - в начале 90-х уехал на ПМЖ в Израиль, мать преподавала математику в ПТУ. Кроме любви к хорошей музыке, она привила сыну увлечение решением задач и головоломок. В 9-м классе Григорий перевелся в физико-математическую школу № 239, но еще с 5-го класса он посещал математический центр при Дворце пионеров. Победы во всесоюзных и международных олимпиадах позволили поступить Перельману в Ленинградский университет без экзаменов.

Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем.



Трудное время 90-х заставило молодого ученого уехать на работу в США. Те, кто знал его тогда, отмечали его аскетизм в быту, увлечённость работой, прекрасную подготовку и высокую эрудицию, которые и стали залогом того, что Перельман доказал теорему Пуанкаре. Вплотную он занялся этой проблемой после возвращения в Санкт-Петербург в 1996 году, но начал думать над ней еще в США.



Верное направление

Григорий Яковлевич отмечает, что его всегда увлекали сложные проблемы, такие как теорема Пуанкаре. Доказательство Перельман стал искать в направлении, вынесенном из беседы с профессором Колумбийского университета Ричардом Гамильтоном (род. 1943). Во время пребывания в США он специально ездил из другого города на лекции этого неординарного ученого. Перельман отмечает прекрасное доброжелательное отношение профессора к молодому математику из России. В их разговоре Гамильтон упомянул о потоках Риччи – системе дифференциальных уравнений – как способе решения теорем геометризации.



Впоследствии Перельман пытался связаться с Гамильтоном и обсудить ход работы над задачей, но не получил ответа. Долгое время после возвращения на родину Григорий Яковлевич провел наедине с труднейшей задачей, которой была теорема Пуанкаре. Доказательство Перельмана – итог огромных усилий и самоотречения.



Гамильтон пришел в тупик, когда увидел, что при преобразованиях кривых под действием потоков Риччи образуются сингулярные (обращающиеся в бесконечность) зоны, которые не предусматривала теорема Пуанкаре. Простыми словами, Перельману удалось нейтрализовать образование таких зон, и многообразие благополучно превратилось в сферу.



Потоки Риччи

Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0.



Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Его направление внутрь при положительной кривизне и вовне - при отрицательной. Каждую точку заставляем двигаться в направлении и со скоростью, определяемыми соответствующим вектором. Замкнутая кривая, проведенная в любом месте плоскости, при такой эволюции превращается в окружность. Это справедливо для размерности 3, что и требовалось доказать.



Нет пророка…

Он взошел на свой Эверест, каким признается математиками теорема Пуанкаре. Доказательство Перельман выложил в Интернет в виде трех небольших статей. Они немедленно вызвали ажиотаж, хотя русский математик не пошел положенной дорогой – публикация в специализированном журнале в сопровождении профессиональных рецензий. Григорий Яковлевич в течение месяца разъяснял в университетах США суть своего открытия, но число до конца понявших ход его мысли увеличивалось очень медленно.

Лишь через четыре года появилось заключение самых больших авторитетов: доказательства русского математика корректны, первая из проблем тысячелетия решена.



Эпоха соцсетей

Ему пришлось пережить ажиотаж и хамство в соцсетях, молчание тех, кого он уважал, и крики других, учивших его жизни. Энергичные китайцы сначала оценили его вклад в решение проблемы в 25 %, себе и другим насчитав 80! Потом вроде бы пришло мировое признание, но выдержать такое дано не каждому.



Хочется верить: он выдержал, и в жизни его - гармония желаний и возможностей.


Доказательство этой гипотезы российским математиком Григорием Перельманом привело к некоторым очень интересным выводам с точки зрения нашего понимания мира. Смотреть все фото в галерее Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре. В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века. Основатель топологии Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики. Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д. × Геометрия - отрасль математики, где Пуанкаре стал признанным новатором и лидером мирового масштаба. Теория Лобачевского, открыв новые измерения и пространства, еще нуждалась в ясной и логичной модели, и Пуанкаре придал идеям великого русского ученого прикладной характер. Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии. Одна из семи задач тысячелетия В самом начале XXI века одно из подразделений американского университета в Кембридже - математический институт, основанный на средства бизнесмена Лэндона Т. Клэя - опубликовал список Millennium Prize Problems (проблем тысячелетия). Он содержал семь пунктов из классических научных задач, за решение каждой из которых учреждалась премия в миллион долларов: • Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности). • Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами). • Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере). • Гипотеза Римана (о закономерности размещения простых чисел). • Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий). • Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей). • Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые). Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял. Классическая формулировка Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее. Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии. Гомеоморфизм Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать. Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб. Связность Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов. Многообразие Если объект или пространство разделить на множество составных частей – окрестностей, окружающих какую-то точку, - то их общность называют многообразием. Именно такое понятие содержит теорема Пуанкаре. Компактность означает конечное число элементов. Каждая отдельная окрестность подчиняется законам традиционной – эвклидовой – геометрии, но вместе они образуют нечто более сложное. Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку. Трехмерная сфера По определению, сфера – совокупность точек, которые равноудалены от центра – некой фиксированной точки. Одномерная сфера расположена в двухмерном пространстве в виде окружности на плоскости. Двухмерная сфера – поверхность шара, его «корочка» - совокупность точек в трехмерном пространстве и, соответственно, трехмерная сфера – суть теоремы Пуанкаре – поверхность четырехмерного шара. Вообразить такой объект очень трудно, но, говорят, мы - внутри такого геометрического тела. Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире. Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку. Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные. Долгий путь к истине Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4. В 2006 году эта награда - медаль Филдса - была присвоена русскому математику из Санкт-Петербурга. Григорий Яковлевич Перельман доказал теорему Пуанкаре для трехмерного многообразия и трёхмерной сферы. Получать награду он отказался. Обыкновенный гений Григорий Яковлевич родился 13 июня в Ленинграде, в интеллигентной семье. Отец - инженер-электрик - в начале 90-х уехал на ПМЖ в Израиль, мать преподавала математику в ПТУ. Кроме любви к хорошей музыке, она привила сыну увлечение решением задач и головоломок. В 9-м классе Григорий перевелся в физико-математическую школу № 239, но еще с 5-го класса он посещал математический центр при Дворце пионеров. Победы во всесоюзных и международных олимпиадах позволили поступить Перельману в Ленинградский университет без экзаменов. Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем. Трудное время 90-х заставило молодого ученого уехать на работу в США. Те, кто знал его тогда, отмечали его аскетизм в быту, увлечённость работой, прекрасную подготовку и высокую эрудицию, которые и стали залогом того, что Перельман доказал теорему Пуанкаре. Вплотную он занялся этой проблемой
запостил(а)
Stanley
Вернуться назад
0

Смотрите также

Другие посты
А что там на главной? )))
Комментарии (0)